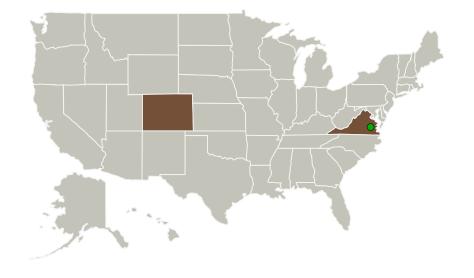
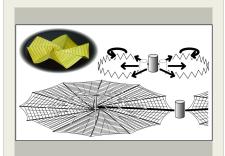
Spirally Stowed Architecture for Large Photovoltaic Arrays, Phase I




Completed Technology Project (2014 - 2014)

Project Introduction

Proposed is an architecture for large (>200 m2 surface area) photovoltaic (PV) arrays, deployable from compact stowage with one single, continuously smooth sweep of motion and directly scalable to sizes at least an order of magnitude larger to provide surface areas beyond 4000 m2 -- the area associated with 1 MW power production, the upper limit of projected solar electric propulsion (SEP) needs in 10-20 years. In particular, examined is the integration of a version of the "spiral fold" (an origami-like surface mechanism to wrap without stretching a tessellated sheet on a hub) and wrap rib technology (supporting ribs that also wrap around the hub when stowed) with some additional concept elements to increase stiffness when deployed and the robustness of deployment. Kinematic conflicts between components with geometric mismatch in a real-life hardware context re resolved, metrics for stowage and structural performance are assessed, and a streadmlined concept design is defined to satisfy all targeted specifications. TRL level is advanced from 1 to 3.

Primary U.S. Work Locations and Key Partners

Spirally Stowed Architecture for Large Photovoltaic Arrays Project Image

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Images	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Spirally Stowed Architecture for Large Photovoltaic Arrays, Phase I

Completed Technology Project (2014 - 2014)

Organizations Performing Work	Role	Туре	Location
TentGuild Engineering	Lead	Industry	Boulder,
Company	Organization		Colorado
Langley Research	Supporting	NASA	Hampton,
Center(LaRC)	Organization	Center	Virginia

Primary U.S. Work Locations	
Colorado	Virginia

Project Transitions

0

June 2014: Project Start



December 2014: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/140550)

Images

Project Image

Spirally Stowed Architecture for Large Photovoltaic Arrays Project Image

(https://techport.nasa.gov/imag e/127688)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

TentGuild Engineering Company

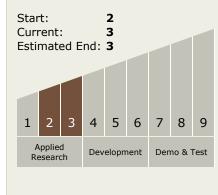
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Gyula I Greschik

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Spirally Stowed Architecture for Large Photovoltaic Arrays, Phase I

Completed Technology Project (2014 - 2014)

Technology Areas

Primary:

- TX12 Materials, Structures, Mechanical Systems, and Manufacturing
 - └ TX12.2 Structures
 - └ TX12.2.1 Lightweight Concepts

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

